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Abstract

The NF-E2-related factor 2 (Nrf2)-mediated signaling pathway provides living organisms an 

efficient and pivotal line of defensive to counteract environmental insults and endogenous 

stressors. Nrf2 coordinates the basal and inducible expression of antioxidant and phase II 

detoxification enzymes to adapt to different stress conditions. The stability and cellular 

distribution of Nrf2 is tightly controlled by its inhibitory binding protein Kelch-like ECH-

associated protein 1 (Keap1). Nrf2 signaling is also regulated by post-translational, transcriptional, 

translational and epigenetic mechanisms, as well as by other protein partners, including p62, p21 

and IQ motif-containing GTPase activating protein 1 (IQGAP1). Many studies have demonstrated 

that Nrf2 is a promising target for preventing carcinogenesis and other chronic diseases, including 

cardiovascular diseases, neurodegenerative diseases, and pulmonary injury. However, constitutive 

activation of Nrf2 in advanced cancer cells may confer drug resistance. Here, we review the 

molecular mechanisms of Nrf2 signaling, the diverse classes of Nrf2 activators, including 

bioactive nutrients and other chemicals and the cellular functions and disease relevance of Nrf2 

and discuss the dual role of Nrf2 in different contexts.

Keywords

NF-E2-related factor 2 (Nrf2); Kelch-like ECH-associated protein 1 (Keap1); nutrients; activator; 
antioxidant; ROS

1. Introduction

Understanding of the NF-E2-related factor 2 (Nrf2) pathway has been greatly advanced in 

the last two decades (Figure 1). Nrf2 is a master regulator of the antioxidant response and 
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xenobiotic metabolism through the regulation of a wide range of antioxidant and phase II 

detoxification genes [1, 2]. Nrf2 protects cells from stressors, including endogenous 

substances, reactive oxygen species, radiation, environmental toxins, and xenobiotics from 

food. Therefore, activation of the Nrf2 pathway might be a promising strategy for 

chemoprevention. This view is supported by a number of studies demonstrating that Nrf2 is 

essential for chemopreventive agents, such as sulforaphane and oltipraz, to block 

carcinogenesis and that Nrf2-deficient mice are more prone to chemical-induced cancer 

development [3–5]. Recent studies have demonstrated that Nrf2 also protects against chronic 

diseases such as cardiovascular disease, neurodegenerative diseases, and pulmonary injury 

[6–8]. However, the role of Nrf2 in human diseases is more complicated than originally 

thought. For example, Nrf2 promotes cancer cell survival and confers resistance to 

chemotherapeutics and radiotherapy, which has been coined as the “dark side of Nrf2” [9]. 

The paradox is not yet resolved and stimulates more research to rationalize the dual role of 

Nrf2 at different contexts.

Many structurally distinct chemicals are inducers of antioxidant and phase II detoxification 

enzymes (Table 1). Their common features include their electrophilicity and reactivity to 

sulfhydryl groups [10]. With the discovery of the antioxidant response element (ARE), Nrf2 

and Kelch-like ECH-associated protein 1 (Keap1), the molecular mechanisms of Nrf2 

activation have been unraveled [1, 11–14]. Some Nrf2 activators exhibit promising efficacy 

in preventing or treating chronic diseases, including cancer. However, the “dark side” of 

Nrf2 and off-target side effects of Nrf2 inducers must be taken into consideration when 

applying them in clinical trials.

2. Regulation of the Nrf2 pathway

2.1 The classical Nrf2-Keap1 signaling pathway

As depicted in Figure 2, Keap1 is a key Nrf2 repressor and plays a pivotal role in regulating 

the Nrf2 signaling pathway [12, 13, 45, 46]. Nrf2 has two binding motifs in the Neh2 

domain, the ETGE and DLG motifs, and recruits two molecules of Keap1 in the absence of 

stimuli [47, 48]. Keap1 serves as a bridge between Nrf2 and ubiquitination ligase Cullin-3 

(Cul-3), which is required for the ubiquitination of lysines in the Neh2 domain and 

subsequent proteasomal degradation [45, 46, 49, 50]. The negative regulation of Nrf2 by 

Keap1 has been confirmed in mouse models. Keap1-knockout mice express constitutively 

high levels of Nrf2, and select heterozygous Keap1 mutations abrogate the repressive effects 

of wild-type Keap1 on Nrf2 [51, 52].

Oxidative stressors or electrophiles inhibit the ubiquitination-dependent degradation and 

increase nuclear accumulation of Nrf2. As a cysteine-rich protein, Keap1 is an excellent 

sensor for chemical inducers [53]. Accumulating evidence lead to the “cysteine code” 

hypothesis, which proposes that different classes of Nrf2 activators have unique preferences 

in modifying specific cysteines (reviewed in [54]). Sulforaphane and tBHQ activate Nrf2 in 

a Cys151-dependent manner, whereas endogenous alkenal metabolites prefer Cys273/288 

[17, 34, 55]. Cysteine modifications alter the proper conformation of the Keap1-Nrf2-Cul3 

complex but do not dissociate Keap1 from the Neh2 domain of Nrf2 [56]. In the “hinge & 

latch” model, Nrf2 activators disrupt the relatively weak interaction between Keap1 and the 
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DLG motif, but not the one between Keap1 and the ETGE motif [47, 48]. The switch from 

two-site to one-site binding inhibits Nrf2 ubiquitination, thereby rescuing Nrf2 from 

degradation. Nrf2 accumulates in the nucleus, where it dimerizes with small Maf proteins 

and binds to the ARE cis-regulatory sequences to trigger transcriptional expression [1, 57]. 

A large number of genes have been identified as downstream targets of Nrf2, including 

NAD(P)H:Quinone Oxidoreductase 1 (NQO1) and certain glutathione S-transferases (GSTs) 

(reviewed in [58]).

2.2 Posttranslational regulation of Nrf2

Phosphorylation of Nrf2 can be detected by radioactive 32P labeling, phosphorylation-

specific antibodies and mass spectrometry [59, 60]. A number of studies have examined the 

upstream regulators of Nrf2 phosphorylation, including protein kinase C (PKC), mitogen-

activated protein kinases (MAPKs), PKR-like endoplasmic reticulum kinase (PERK), 

phosphatidylinositol 3-kinase (PI3K), and glycogen synthase kinase-3 (GSK-3). PKC 

phosphorylates Nrf2 at Ser40, a residue located in the Neh2 domain that binds Keap1. PKC 

activates the Nrf2 pathway, likely through disturbing the Nrf2-Keap1 interaction [60–62]. 

The effects of MAPKs on Nrf2 signaling appear to depend on the specific MAPK. In 

general, activation of JNK1 and ERK2 promotes the Nrf2 pathway, whereas activation of 

p38 is inhibitory [63]. Multiple sites in Nrf2 are phosphorylated by various forms of MAPKs 

(JNK1/2, ERK2, p38, and MEKK3/4) in HEK293T cells, but the Nrf2-mediated ARE 

response is unaffected by mutation of these sites [60]. This finding raises the question 

whether MAPK-mediated activation of Nrf2 occurs through direct phosphorylation. PERK 

enhances the nuclear accumulation of Nrf2 under endoplasmic reticulum stress [64]. PI3K 

also promotes the nuclear translocation of Nrf2 and induces the expression of ARE-

containing genes [65]. By contrast, GSK-3, negatively regulated by PI3K, inhibits Nrf2 by 

promoting its degradation [66–69]. GSK-3 catalyzes the phosphorylation of Nrf2 at the 

Neh6 domain and decreases its stability independent of Keap1-mediated degradation [68]. 

Taken together, protein kinases play a crucial role in Nrf2 signaling. However, it remains 

unclear whether the phosphorylation of critical Nrf2 residues directly affects Nrf2 signaling. 

Protein kinases might regulate the Nrf2 pathway through direct phosphorylation or indirect 

signaling cascades, which need to be dissected in the future.

2.3 Regulation of Nrf2 by p62, p21 and IQGAP1

Several studies have revealed the important role of p62 in the Nrf2-Keap1 pathway. The p62 

protein, also named as sequestosome 1 (SQSTM1), is involved in autophagy by regulating 

the formation of protein aggregates [70]. p62 competes with Nrf2 for binding with Keap1 

through its STGE motif [71–74]. p62 also sequesters Keap1 in the autophagosome, leading 

to the autophagy-dependent degradation of Keap1 [71–75]. Consequently, Keap1-mediated 

Nrf2 ubiquitination is attenuated, and Nrf2 stability is increased. Overexpression of p62 in 

HEK293 cells increases both the protein level of Nrf2 and the mRNA expression of its target 

genes HO-1 and NQO1 [73]. In the livers of autophagy-deficient mice where p62 levels are 

high, the expression of Nrf2 and its downstream genes are markedly elevated [71, 76]. 

Persistent activation of p62 and Nrf2 contributes to diseases such as liver dysfunction and 

hepatocellular carcinoma, possibly through abnormal autophagy [71, 75–77]. Interestingly, 

arsenic induces Nrf2 in a p62-dependent manner, whereas sulforaphane and tBHQ are 

Huang et al. Page 3

J Nutr Biochem. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

WWW.SALUD-EPIGENETICA.COM | WWW.GNMX.ORG 



independent of p62 [44, 72]. The crosstalk between p62 and the Nrf2-Keap1 pathway 

provides an emerging pathway to examine the role of Nrf2 in carcinogenesis.

Direct interaction between Nrf2 and p21Cip1/AF1 contributes to the basal and inducible 

antioxidant response [78]. Chen et al. revealed the binding of p21 to Nrf2 at the DLG and 

ETGE domains, both of which are required for Keap1-mediated ubiquitination and 

degradation [78]. In addition, the authors reported that ubiquitination of Nrf2 is enhanced in 

p21-deficient HCT116 cells under both basal and tBHQ treated conditions, leading to 

decreased stability of Nrf2. It is likely that p21 alters the conformational structure of the 

Keap1-Nrf2 complex. Loss of p21 substantially reduces the basal and induced levels of Nrf2 

protein and its target genes in HCT116 cells and mouse livers.

We recently identified the IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a 

binding partner of Nrf2 through the IQGAP1 IQ domain (amino acids 699–905) [79, 80]. 

IQGAP1 is a scaffold protein that interacts with proteins such as actin, E-cadherin, β-

cadherin, and calmodulin [81]. IQGAP1 is an important component in maintaining 

cytoskeletal architecture, cell-cell adhesion, and Ca2+ signaling [81]. We demonstrated that 

ectopically expressed IQGAP1 enhances the stability of GFP-Nrf2, and conversely, 

IQGAP-1 deficiency decreases Nrf2 stability [79]. Treatment with Ca2+, an agonist for 

IQGAP1 signaling, promotes the nuclear accumulation of the IQGAP1-Nrf2 complex and 

induces the expression Nrf2 target genes, such as GSTpi, GCLC and NQO1. We also 

demonstrated that MEK-ERK-mediated Nrf2 phosphorylation is attenuated in IQGAP1 

knockdown cells [80]. Given that a direct interaction between IQGAP1 and both MEK and 

ERK has been reported [82], we speculate that IQGAP1 might provide a platform for the 

crosstalk between MAPK and Nrf2 signaling.

2.4 Transcriptional regulation

Regulation of Nrf2 at the transcriptional level is far less studied compared to its regulation at 

the protein level. DeNicola et al. demonstrated that oncogenic alleles of Kras, Braf and Myc 

induce mRNA expression of Nrf2 and its target genes [83]. The transcriptional upregulation 

may involve the binding of Myc and Jun to the Nrf2 promoter, although detailed molecular 

mechanisms are not clear. Enhanced Nrf2 expression leads to the reduction of intracellular 

ROS and may provide a more favorable environment for cancer cell proliferation.

2.5 Translational regulation

We have reported the translational machinery that controls protein synthesis of Nrf2 [84]. 

Human Nrf2 mRNA contains an internal ribosomal entry site (IRES) at the 5’ untranslated 

region that is required to initiate the internalization of Nrf2 mRNA into ribosomes for 

protein synthesis. In addition, an inhibitory element (IE) exists upstream of the IRES, 

blocking ribosomal internalization of mRNA. Hydrogen peroxide and sulforaphane 

treatment induces the entry of Nrf2 mRNA into polysomal fractions and augments its 

translation in an IRES-dependent manner. These findings suggest that the Nrf2 translation 

efficiency is low in normal conditions and markedly increases under stress such that cells 

can consume energy efficiently for protein synthesis and degradation.
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2.6 Epigenetic regulation

Accumulating research demonstrates that the transcriptional expression of some specific 

genes is controlled by epigenetic modification involving chromatin structural alterations. 

Epigenetic modulations can be caused by DNA methylation, histone modifications, and 

microRNAs [85]. DNA methylation is catalyzed by DNA methyltransferases (DNMTs) that 

transfer a methyl group to the 5′ position of the cytosine residue within CpG dinucleotides 

[86, 87]. Inappropriate DNA methylation of CpG islands in tumor suppressor genes and 

oncogenes has been observed in many cancer cells and is one of the potential carcinogenic 

mechanisms during the development of human cancers [85, 88–91].

Our group has reported that the transcription of Nrf2 is suppressed in prostate tumors of 

TRAMP mice and tumorigenic TRAMP-C1 cells due to the hypermethylation of select 

CpGs in the promoter of Nrf2 [92]. Repressive proteins, such as methyl-CpG-binding 

protein 2 (MBD2) and trimethyl-histone H3 (Lys9), are enriched in this region. Because 

DNA methylation is reversible, combined treatment with 5-aza-29-deoxycytidine (a DNMT 

inhibitor) and trichostatin A (a histone deacetylase inhibitor) restores Nrf2 expression in 

TRAMP-C1 cells [92]. Recently, a variety of bioactive nutrients, e.g. curcumin [21], 

tocopherols [93], sulforaphane [19, 20], 3,3′-diindolylmethane (DIM) [94] were found to 

modulate DNA methylation and/or histone modification, effectively restoring Nrf2 

expression.

Recently, several microRNAs have been found to regulate the Nrf2-Keap1 pathway. 

MicroRNAs, transcribed from genetic loci, are small (20–22 nucleotides) non-protein-

coding RNAs [95]. MicroRNAs regulate gene expression by inhibiting translation or 

inducing degradation of their target mRNAs [95]. Overexpression of four microRNAs, 

including miR-144, miR-153, miR-27a, and miR-142-5, either individually or as a group, 

can reduce Nrf2 mRNA and protein levels, leading to reduced glutathione production in 

neuronal SH-SY5Y cells [96]. MiR-144 and miR-28 mediate the degradation of Nrf2 

mRNA by targeting the 3’-untranslated region (3’-UTR) [97, 98]. Moreover, miR-34a is 

elevated in the livers of aged rats, which is associated with suppressed expression of Nrf2 

[99]. The negative regulation of miR-34a on Nrf2 was further confirmed by the transfection 

of miR-34a in HEK293 cells. In addition, miR-200a mediates the degradation of Keap1 

mRNA in breast cancer cells, and the reduction of Keap1 activates the Nrf2 pathway [100].

3. Nrf2 activators: diverse structures and distinct mechanisms

Nrf2 activators comprise a range of structurally diverse chemicals, classified as 

isothiocyanates, Michael reaction acceptors, dithiolethiones, oxidizable diphenols/

phenylenediamines/quinones, thiocarbamates, polyenes, hydroperoxides, trivalent 

arsenicals, heavy metals and dimercaptans (Table 1) [10, 101]. Keap1 is the primary target 

of Nrf2 activators, most of which are electrophilic or reactive to thiol groups. Select Keap1 

cysteine residues undergo covalent modifications depending on the nature of the Nrf2 

inducers [15, 36, 37, 53, 56]. It is intriguing whether the position of the modified cysteine 

affects the subsequent biological effects. In addition to Keap1, some Nrf2 activators also 

modulate other machinery in Nrf2 signaling, as discussed in the preceding section.
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3.1 Nrf2 activation and bioactive nutrients

The human diet provide a wide variety of bioactive nutrients that posses health beneficial 

effects and able to activate the Nrf2 signaling pathway. Isothiocyanates (cruciferous 

vegetables) [102], organosulfur compounds (garlic and onions) [103], polyphenols (green 

tea and spice turmeric) [28], and isoflavones (soy beans) [104] have been characterized as 

potent Nrf2 activators. In general, these naturally occurring compounds can stimulate 

various upstream kinases, interfere the Keap1-Nrf2 interaction, and/or disturb cellular redox 

balance, resulting in the activation of the Nrf2 pathway. Administration of these compounds, 

i.e., sulforaphane [105], curcumin [106, 107], daillyl trisulfide (DATS) [24], 

epigallocatechin-3-gallate(EGCG) [108, 109] and genistein [31], have been reported to be 

protective against carcinogenesis, neurodegeneration, cardiovascular disease and diabetic 

neuropathy in rodent models in part through activation of the Nrf2 pathway. Consuming 

sufficient amount of fruits and vegetables is not only to meet the nutritional needs but also to 

boost defense capacity against many oxidative stress and inflammation-associated disease.

Sulforaphane, an isothiocyanate, can be digested from cooked cruciferous vegetables and a 

variety of oral supplements containing purified sulforaphane or broccoli sprout extract [82–

86]. Sulforaphane activates the Nrf2-Keap1 pathway through direct modifications of critical 

Keap1 cysteines, especially Cys151, as evidenced in mass spectrometry analysis, site-

directed mutagenesis and in vivo experiments [15–17, 34, 110]. Sulforaphane treatment also 

promotes the ribosomal internalization of Nrf2 mRNA for protein synthesis [84]. Recently, 

we demonstrated that sulforaphane restores Nrf2 mRNA expression epigenetically through 

the demethylation of promoter CpGs in TRAMP-C1 and JB6 cells [19, 20]. Following acute 

or long-term administration of sulforaphane, antioxidant and phase II drug metabolizing 

enzymes are induced in the liver, intestines, skin, prostate, and blood lymphocytes [111–

117]. Sulforaphane has been shown to be protective against carcinogenesis in various types 

of carcinogen-induced and transgenic cancer models (reviewed [58, 118]). Clinical studies 

have demonstrated that the consumption of broccoli sprout extract changes the disposition of 

aflatoxin-DNA adducts and is well-tolerated in humans [119–121].

Curcumin, a polyphenolic phytochemical, is one of the most active components of 

Curcuma longa (turmeric or curcuma), which is a rhizomatus monocotyledonous perennial 

herbaceous plant member of the ginger family (Zingiberaceae) [122]. Evidence has 

demonstrated that curcumin could strongly induce HO-1 and other protein members of 

Phase II detoxification through the activation of Nrf2/ARE pathway in different tissues 

[123]. In a long term in vivo study, curcumin showed cancer prevention effect by inducing 

phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour 

suppressor p53 and modulation of inflammatory mediators[106]. After intraperitoneal 

injection of curcumin to mice, it highly induced Nrf2/ARE activity in intestine, liver, kidney 

and spleen [107]. Curcumin was found to induce HO-1 expression via activation of Nrf2 by 

binding to cysteine residue of Keap1 [22]. Curcumin were also found to increase NQO1 

expression and the binding activity of Nrf2 to antioxidant response element (ARE) [23]. Our 

recent epigenetics study found that curcumin restores the expression of Nrf2 via 

demethylation of its CpGs promoter region [21].
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DATS, an organosulfur, is one of the major constituents in garlic oil. In in vitro and in vivo 

experiments, DATS activates Nrf2 and induces HO-1 and NQO1 expression which appears 

to be mediated through modification of the Keap1 Cys288 residue [24]. DATS-induced ROS 

production and the subsequent activation of upstream kinases may also be related to the 

activation of Nrf2 [24]. When cardiomyocytes exposed to high glucose were treated with 

DATS, it showed protection against hyperglycemia-induced ROS-mediated apoptosis by 

increase of HO-1 and Nrf2 expression via upregulating the PI3K/Akt/Nrf2 pathway [25].

EGCG, a polyphenol found abundantly in green tea possesses anti-oxidative stress and 

chemopreventive activities [124]. Using in vitro and in vivo studies, EGCG has 

demonstrated its effect in increasing NRF2 expression as a possible chemopreventive agent 

for cancer [109] or lupus nephritis [108]. Many publications have revealed the mechanism 

of EGCG on Nrf2 pathway. EGCG has demonstrated its protective effect on human 

umbilical vein endothelial cells from PM2.5-induced oxidative stress injury by upregulating 

Nrf2/HO-1 via activation of the p38 MAPK and the ERK1/2 signaling pathways [28]. Na 

et.al. found that EGCG induces Nrf2-mediated expression of MnSOD and HO-1 and 

activation of ERK1/2 and PI3K/Akt in MCF10A cells [30]. EGCG could promote the 

nuclear translocation of Nrf2 and EGCG were found to promote the dissociation of Nrf2 

from Keap1 [29]. Kanzaki et.al. reported that SFN and EGCG augmented the nuclear 

translocation of Nrf2 and the expression of HO-1 in mouse monocytic cell line [26]. Wang 

et.al. also found EGCG promotes Nrf2 nuclear translocation in normal rat kidney proximal 

tubular epithelial cell line NRK-52E [27].

Genistein is a major soy isoflavone in soy products. Low dose genistein was demonstrated 

to exert profound neuroprotection, antioxidant and cognitive function preservation effects in 

rats via enhanced eNOS activation and upregulation of the Nrf2/HO-1 via increaseing keap1 

S-nitrosylation, nuclear accumulation of Nrf2 and enhanced DNA binding activity of Nrf2 

[31]. Genistein was found to protect cerebrovascular endothelial cells from oxidative 

damage by activation of Nrf2 signaling pathway via modulating PI3K activity [32].

3.2 Nrf2 activation and other compounds

Synthetic oleanane triterpenoids such as 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid 

(CDDO) and its derivatives are the most potent Nrf2 inducers ever discovered, activating 

Nrf2 signaling at nanomolar concentrations [33, 125]. These compounds belong to the 

Michael reaction acceptors and are reactive to nucleophiles containing –SH groups when 

incubated with dithiothreitol (DTT), cysteine, or reduced glutathione [126]. Given the 

chemical properties of these compounds, they very likely modify one or more Keap1 

cysteine residues, although the exact ‘cysteine code’ remains to be elucidated [34, 35]. Oral 

administration of CDDO-Im, an imidazole derivative of CDDO, elevates the expression of 

HO-1 and NQO1 in the liver and other organs in mice in an Nrf2-dependent manner [33, 

127]. A variety of CDDO derivatives are effective for preventing or treating cancer in 

preclinical models (reviewed in [128]). In addition, CDDO-Im also provides protection 

against kidney injury, emphysema and cardiac dysfunctions through the Nrf2 pathway [129, 

130].
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Oltipraz is a synthetic dithiolethione, which is a class of organosulfur compounds. 

Dithiolethiones are reactive to thiols and potentially modify Keap1 cysteine residues [131, 

132]. 3H-1,2-dithiole-3-thione, a dithiolethione structurally similar to oltipraz, induces 

intermolecular disulfide bonds between two Keap1 molecules at Cys273 and Cys288 [36]. 

Other studies suggest that dithiolethiones activate the Nrf2 pathway through the generation 

of H2O2 or other superoxides, which are another class of Nrf2 inducers [132–134]. Oltipraz 

stimulates a battery of antioxidant and phase II detoxification enzymes, such as NQO1, 

GSTs and UGTs, and elevates GSH in vitro and in vivo [3, 4, 135, 136]. Oltipraz, an ancient 

compound used in early chemoprevention studies in the 1980s [137–140], suppresses 

tumorigenesis induced by a broad range of carcinogens (reviewed in [131, 141]). Its 

chemopreventive efficacy in carcinogen-induced models appears to depend on Nrf2, as its 

efficacy is lost in Nrf2 knockout (KO) mice [3, 4, 135]. A clinical study reported that 

oltipraz increased aflatoxin-mercapturic acid conjugates in urine in subjects with high 

exposure to aflatoxin B1, indicating faster excretion of aflatoxin B1 [142].

tBHQ and tBQ are oxidized products from butylated hydroxyanisole (BHA), which is an 

oxidizable diphenol and commonly used as an antioxidant food preservative. Cys151 of 

Keap1 is a specific sensor for tBHQ. Nrf2 induction by tBHQ is diminished in cell culture 

and zebrafish by the ectopic expression of Keap1-C151S mutants, as well as in mouse 

embryonic fibroblasts (MEFs) and primary peritoneal macrophages derived from transgenic 

mice expressing the Keap1-C151S mutant [17, 34, 38, 110]. Although tBHQ-Cys151 adduct 

has not been detected by mass spectrometry, the oxidized quinone metabolite of tBQ forms a 

covalent adduct with Keap1 at Cys151 in a cell-free system [37]. Furthermore, tBHQ 

enhances the ubiquitination of Keap1, possibly from the switch of Cul3-mediated 

ubiquitination from Nrf2 to Keap1, leading to the stabilization of Nrf2 protein [39]. Nrf2 

induction by BHA and tBHQ is associated with the activation of JNK1 and ERK2, 

respectively [40]. BHA regulates a wide array of genes involved in phase II detoxification, 

ubiquitination, transporters and protein kinases in the small intestine and liver in mice 

through an Nrf2-dependent pathway [143]. Notably, the in vivo effects of BHA might be due 

to the combined action of BHA itself and its oxidized metabolites such as tBHQ and tBQ, 

which are more potent Nrf2 activators [144, 145]. The health concerns of the use of BHA as 

a food additive have been debated since the 1960s. One early study reported that BHA 

feeding (0.5% w/w) for 60 weeks inhibited ciprofibrate-induced hepatic tumorigenesis in 

rats [146]. By contrast, other studies found that BHA increased the toxicity of other 

chemicals or radiation, but BHA feeding (0.4%) alone for 104 weeks did not lead to 

carcinogenesis in rats [147, 148].

Arsenic is a ubiquitous environmental toxin, found in ground water, soil, and air. Arsenic 

exposure leads to prolonged Nrf2 activation through unique mechanisms that are not 

observed in sulforaphane or tBHQ treatment [41, 44]. Nrf2 induction by arsenic is 

associated with elevated p62 and the accumulation of autophagosomes, and knockdown of 

p62 diminishes the induction [44]. The proper interaction of Nrf2 and Keap1 is likely to be 

disordered due to the Keap1-p62 interaction and the sequestration of Keap1 in 

autophagosomes during arsenic-induced autophagy deficiency [44, 73]. The half-life of Nrf2 

is markedly extended by approximately 10-fold when Nrf2 ubiquitination is inhibited by 
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arsenic [41]. Although Nrf2 deletion rescues liver dysfunction in autophagy-deficient mice, 

it is not clear whether prolonged Nrf2 activation contributes to arsenic toxicity. By contrast, 

Nrf2 deficiency exacerbates arsenic toxicity in liver and bladder [149].

4. Nrf2 and cellular functions

4.1 Redox balance and xenobiotic metabolism

Reactive oxygen species (ROS), such as superoxides, hydrogen peroxide, and hydroxyl free 

radicals, are constantly produced in aerobic organisms. Aerobic respiration, during which 

some electrons leak from the electron transport chain and activate oxygen molecules, is the 

major source of ROS. Exposure to radiation, ultraviolet light, tobacco smoke, or metal can 

also trigger ROS production. Nitric oxide (NO), a reactive nitrogen species (RNS) generated 

by a group of NO synthases, has important physiological functions in regulating muscle 

contraction, inflammatory response, vasodilation, and platelet aggregation. Balanced cellular 

ROS/RNS is essential to maintain normal physiological processes, whereas excess amounts 

of ROS/RNS are harmful to intracellular macromolecules and are associated with chronic 

diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral 

sclerosis (ALS), diabetes, cardiovascular disease, inflammatory diseases, and cancer [150]. 

Mammalian cells have evolved with complicated antioxidant systems for survival, 

consisting of non-enzymatic antioxidants such as vitamin C and E and inducible antioxidant 

enzymes. Nrf2 coordinates the expression of ARE-containing genes, including superoxide 

dismutases (SODs), glutathione peroxidase (GPx), NQO1, heme oxygenase-1 (HO-1), and 

many enzymes involved in glutathione production, which can respond quickly to oxidative 

stress and maintain a balanced redox state in cells [151].

Humans also face carcinogenic and mutagenic stresses caused by xenobiotics from 

environmental pollutants. In general, xenobiotics undergo metabolism through two distinct 

phases: phase I metabolism that includes oxidation, reduction and hydrolyses, and phase II 

metabolism that comprises conjugation reactions such as glucuronidation, glutathione 

conjugation and sulfation [152]. Phase I metabolism of xenobiotics often produces 

carcinogenic intermediates, as exemplified by benzo[a]pyrene and aflatoxin [153, 154]. 

Phase II metabolism often yields more water-soluble and fewer toxic metabolites. Nrf2 

controls many phase II metabolizing enzymes, such as the GST family, the sulfotransferase 

3A family, and the UDP-glucuronosyl transferase (UGT) family [58, 151]. Indeed, Nrf2 

deficiency predisposes the toxicity of various carcinogens such as benzo[a]pyrene and 

aflatoxin [5, 135].

4.2 Inflammation

Excessive and chronic inflammation contributes to many acute and chronic diseases, 

including autoimmune, neurological and cardiovascular diseases and cancer [155, 156]. 

Increasing evidence suggests that Nrf2 may also protect against inflammation as well as 

oxidative stress [157–163]. Nrf2 mitigates chemical-induced pulmonary injury and 

inflammation [164, 165]. Severe tobacco smoke-induced emphysema, airway inflammation 

and asthma in mice with genetic ablation of Nrf2 may be caused by the reduction of 

antioxidant gene expression and the induction of interleukin (IL)-4 and IL-13 in 
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bronchoalveolar lavage fluid and in splenocytes [166, 167]. Nrf2 is also involved in the 

modulation of the innate immune response, as demonstrated in Nrf2-deficient MEFs [168]. 

Nrf2 may block lipopolysaccharide (LPS)-induced ROS generation of tumor necrosis factor 

alpha (TNF-α), IL-6 and chemokines (Mip2 and Mcp-1) in mice peritoneal neutrophils 

[169]. Compared with wild-type mice, LPS stimulates a high level of inflammatory-related 

signals, such as TNF-α, IL-1, cyclooxygenase 2 (COX-2), and iNOS, in primary peritoneal 

macrophages in Nrf2-KO mice [170, 171]. More severe DSS-induced colitis was observed 

in the colon tissues of Nrf2-KO mice than in wild-type mice, and a lower induction of phase 

II antioxidant and detoxification enzymes and a higher induction of pro-inflammatory 

biomarkers were observed in Nrf2-KO mice [160]. This finding suggests that Nrf2 may 

indirectly protect cells from inflammatory damage through antioxidant activation [169, 172]. 

NF-κB is a key regulator in the innate immune/inflammatory pathway, and the activation of 

NF-κB has been demonstrated in many cancer types [173, 174]. When cells are exposed to 

various stimuli, such as TNF-α, IL-1, H2O2, LPS, or microbial infection, the induced 

proteasome-mediated degradation of IκB proteins leads to the translocation of NF-κB from 

the cytoplasm to the nucleus [175, 176]. Activated NF-κB may further trigger the expression 

of downstream target genes, including various inflammatory cytokines and chemokines, 

adhesion molecules, COX-2, and NO synthase as well as other stress response genes [176–

179]. This suggests that there is cross-talk among Nrf2, NF-κB and inflammation [180]. The 

Nrf2-ARE signaling pathway may be downregulated by pro-inflammatory signaling, as NF-

κB could block the binding between CREB-binding protein (CBP) and Nrf2 or promote the 

interaction of HDAC3 with either CBP or MafK [181]. Additionally, higher activation of 

NF-κB in response to LPS and TNF-α has been observed in Nrf2-deficient MEFs compared 

with wild type MEFs [168]. NF-κB activation can also be affected by Nrf2 target genes such 

as HO-1, NQO1 and thioredoxin (TRX) [182–185].

4.3 Transporters and drug resistance

Transporters mediate the deposition of endogenous substances and xenobiotics, including 

drugs. For example, efflux transporters in the intestine and brain limit the permeability 

across the gastrointestinal tract and blood-brain barrier [186]. Overexpression of efflux 

transporters is a common mechanism of drug resistance, causing failure of cancer 

chemotherapy (reviewed in [187–189]). One superfamily of efflux transporters is the ATP-

binding cassette (ABC) family, which uses the energy of ATP hydrolysis to pump 

xenobiotics out of cells against a concentration gradient.

A growing body of evidence suggests that Nrf2 is involved in regulating the expression of 

efflux transporters, especially those belonging to the ABC family. ARE-like sequences are 

identified in the promoters of genes encoding multidrug resistance-associated proteins 

(MRP), including Mrp1, Mrp2, Mrp3, Mrp4, and Abcg2 [190–193]. The binding of Nrf2 to 

AREs has been confirmed in chromatin immunoprecipitation (ChIP) or ChIP-seq 

experiments [190–194]. In addition, the Nrf2 activators tBHQ, butylated hydroxyanisole 

(BHA), oltipraz, and ethoxyquin induce the expression of MRPS in cultured cells as well as 

in mouse and rat livers [190, 193, 195–197]. Nrf2-knockout mice exhibit lower basal 

expression of Mrp3 and Mrp4 and are less sensitive to BHA and oltipraz-induced expression 

of Mrp2, Mrp3 and Mrp4 compared with Nrf2 wild-type mice [193, 198]. Constitutive 
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overexpression of Nrf2 confers chemoresistance in some advanced cancer cells, including 

human lung adenocarcinoma A549 cells and pancreatic carcinoma Panc1 and Colo357 cells. 

The knockdown of Nrf2 using siRNA or Nrf2 inhibitors sensitizes cellular responses to 

common chemotherapeutic drugs or natural compounds [199–202]. Collectively, Nrf2 is a 

potential target to circumvent chemoresistance.

4.4 Metabolic reprogramming

The distinct patterns of energy metabolism in normal and cancer cells have long been 

observed, but until recently, very little was known regarding the role of Nrf2 in this 

metabolic switch. Cancer cells tend to generate ATP through anabolic glycolysis of glucose 

rather than mitochondrial oxidative phosphorylation, a phenomena known as the Warburg 

effect [203]. Despite the reduced efficiency of energy production through glycolysis, the 

Warburg effect provides a variety of glycolytic intermediates that are needed to synthesize 

nucleosides and amino acids for cell proliferation and division [204, 205]. Recently, 

Mitsuishi et al. found that Nrf2 redirects glucose and glutamine metabolism in favor of the 

production of ribose-5-phosphate and NADPH through anabolic pathways [206]. In their 

study, several metabolic genes were identified as Nrf2 targets. Nrf2 activates glucose-6-

phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), transketolase 

(TKT), transaldolase 1 (TALDO1), and malic enzyme 1 (ME-1) by binding their AREs. 

These findings provide mechanistic understanding of how Nrf2 supports cancer 

proliferation.

Substantial evidence has linked the impaired Krebs cycle (tricarboxylic acid cycle) to Nrf2 

activation via the metabolite fumarate [207–209]. In the normal Krebs cycle, fumarate is 

converted to malate by fumarate hydratase (FH) and remains at a low cellular concentration. 

Accumulation of fumarate can form an adduct with Keap1 on its cysteine residues and 

provoke Nrf2 activation [207, 208]. In hereditary type 2 papillary renal cell carcinoma, the 

high level of fumarate caused by a loss-of-function mutation in FH is associated with 

sustained activation of Nrf2 [207, 208]. The disrupted Krebs cycle triggers metabolic 

reprogramming toward glycolysis [210]. It would be interesting to elucidate the detailed 

molecular mechanisms of Nrf2 in the metabolic switch.

5. Nrf2 and diseases

5.1 The protective role of Nrf2 in chronic diseases

The protective role of Nrf2 in carcinogenesis has been demonstrated in animal models of 

different types of cancer. In early chemoprevention studies, it was observed that 

chemopreventive agents modulate the disposition of carcinogens and inhibit carcinogenesis 

through induction of phase II metabolizing enzymes [138, 211, 212]. Nrf2 is required for 

sulforaphane and oltipraz to exert chemopreventive effects, as shown by comparing their 

efficacy in Nrf2 WT and KO mice [3, 4, 213]. Furthermore, Nrf2 deletion markedly 

increases susceptibility to carcinogen-induced tumor development in various organs, 

including colon, skin, breast, bladder and liver [5]. Nrf2-KO mice exhibit more pronounced 

inflammation in a dextran sulfate sodium-induced colitis model [160, 214, 215]. These 
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results strongly suggest that Nrf2 protects against tumorigenesis by modulating the 

disposition of carcinogens and inflammatory response.

The impact of Nrf2 in neurodegenerative diseases has been evaluated using mouse models 

of PD and AD. Nrf2-KO mice were more vulnerable to 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons, which is a key 

characteristic of PD [6, 216, 217]. Similar results were observed in the 6-hydroxydopamine-

induced PD model [218]. Conversely, astrocyte-specific overexpression of Nrf2 abolished 

MPTP-induced neurotoxicity [6]. In a chronic neuroinflammation mouse model induced by 

long-term administration of MPTP, the levels inflammatory makers such as COX-2, iNOS, 

IL-6, and TNF-α were higher in the brains of Nrf2-KO mice than WT mice [219]. In 

transgenic APP/PS1 AD mice, the overexpression of Nrf2 in the hippocampus significantly 

improved learning and memory ability [220].

A number of studies have demonstrated that Nrf2 protects against cardiovascular diseases. 

Compared with WT mice, Nrf2-KO mice exhibit exaggerated cardiac hypertrophy, overt 

heart failure, and increased mortality caused by transverse aortic constriction [221]. Nrf2-

KO mice exhibit more severe cardiac oxidative stress and cardiac hypertrophy after 

sustained administration of angiotensin II [7]. CDDO-Im treatment relieved smoke-induced 

cardiac dysfunction in Nrf2-WT mice, but the beneficial effects were not observed in Nrf2-

KO mice [129]. Enhancing Nrf2 is a promising strategy to prevent the exacerbation of 

chronic obstructive pulmonary disease (COPD). Features of COPD include persistent 

inflammation and oxidative damage [8]. Nrf2-KO mice are more susceptible to cigarette 

smoke-induced emphysema [222]. Genetic ablation of Nrf2 enhances bronchoalveolar and 

airway inflammation in cigarette smoke-and ovalbumin-induced mouse models [215, 222]. 

Nrf2-KO mice also exhibit more severe pulmonary inflammation and lung tissue injury in 

mouse models of COPD exacerbation triggered by bacterial or viral infection [223–225]. 

Furthermore, sulforaphane enhances bacteria clearance and reduces pulmonary 

inflammation, which requires the involvement of Nrf2 [223].

5.2 The dark side of Nrf2 in carcinogenesis

Given the protective role of Nrf2 in counteracting different stressors and toxins, it is logical 

to speculate that it also provides protection for cancer cells. Indeed, an increasing body of 

evidence demonstrates that Nrf2 is constitutively elevated in many types of cancer cells or 

tumor samples from cancer patients [161, 226–232]. Overexpression of Nrf2 is associated 

with poor prognosis in cancer patients [233–235]. A recent study reported that urethane-

induced lung tumors from Nrf2-KO mice failed to engraft in nude mice, whereas those from 

Nrf2 WT mice grew progressively [236]. Knockdown of Nrf2 led to cell cycle arrest at the 

G1 phase in A549 and NCI-H292 lung cancer cells [201]. Nrf2 might be required to sustain 

proliferative signaling and reprogram energy metabolism, which are hallmarks of cancer 

[201, 206, 237].

Several molecular mechanisms have been elucidated for the constitutive expression of Nrf2 

in cancer. Somatic mutations in Keap1 or Nrf2 occur frequently in lung, ovarian, 

gallbladder, liver and gastric cancer (reviewed in [151, 238, 239]). Loss-of-function 

mutations in Keap1 weaken its binding affinity to Nrf2 and attenuate its repressive effect on 
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Nrf2 [226, 227]. It is noteworthy that mutations in Nrf2 occur predominantly in the DLG or 

ETGE motif in the Neh2 binding domain, thereby enabling Nrf2 to escape from Keap1-

Cul3-mediated ubiquitination and degradation [202]. In addition, epigenetic silencing of 

Keap1 due to CpG hypermethylation in its promoter has been observed in some types of 

cancer [229, 240, 241]. Furthermore, defective autophagy in cancer causes abnormal 

autophagic degradation of Keap1 and impaired Keap1-Nrf2 interaction with the involvement 

of p62 [71–75]. Additionally, endogenous expression of the oncogenes Kras, Braf and Myc 

stimulates the transcriptional expression of Nrf2 in MEFs, which may also occur during 

tumorigenesis [83]. Collectively, the normal Keap1-Nrf2 axis is severely disturbed by 

multiple factors in cancer.

6. The complexity of the Nrf2 pathway: Strength and duration of activation, 

disease stages, and multiple targets of Nrf2 activators

Transcription factor activity is commonly a double-edged sword. The strength of its action is 

a crucial factor in determining which side is predominant. Kensler et al. proposed a U-

shaped relationship of Nrf2 expression and cancer risk [242]. According this paradigm, 

extreme low or high Nrf2 levels increase disease risk. The U-shaped relationship effectively 

describes the observations that Nrf2 deletion increases susceptibility to carcinogens, 

neuronal toxins and bacterial and viral infection, whereas Nrf2 overexpression promotes 

drug resistance and cancer cell proliferation. Therefore, effective prevention occurs within a 

range between the biologically effective dose (BED) and the maximal-tolerated dose 

(MTD).

The duration of Nrf2 activation, which is determined by the underlying mechanism for 

activation, has profound biological consequences. For instance, chemical inducers and 

genetic modifications exhibit different response-time profiles for Nrf2 induction. Chemical 

inducers often exhibit a transient effect on Nrf2 pathway activation. We performed a 

pharmacokinetic-pharmacodynamic study of sulforaphane in rats and found that the 

expression of Nrf2-target genes peaks at 1–2 hours in blood lymphocytes after intravenous 

injection and returns to basal level after 24 hours [117]. By contrast, some chemical inducers 

have a prolonged effect on Nrf2 induction, likely through mechanisms other than the 

classical Nrf2-Keap1 interaction. One such example is arsenic, which recruits p62 and traps 

Keap1 in autophagosomes [44]. Furthermore, genetic factors such as Keap1 deletion, Keap1 

mutation, Nrf2 mutation, and oncogenes generally lead to persistent activation of Nrf2, 

which is linked to the “dark side” of Nrf2 [239]. Transient Nrf2 activation through an intact 

Nrf2-Keap1 axis appears beneficial, whereas persistent Nrf2 activation might be harmful.

The dual role of Nrf2 is exemplified in different stages of tumorigenesis. Nrf2 blocks or 

delays tumorigenesis in normal and premalignant cells by relieving oxidative, mutagenic 

and inflammatory damage and by modulating carcinogen disposition. However, Nrf2 

becomes undesirable when the defensive effects are hijacked by the malignant cells. The 

dual role is demonstrated in a recent study comparing WT and Nrf2-KO mice with urethane 

exposure [236]. Nrf2 prevents lung cancer initiation but enhances its progression in the late 

stage.
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Many Nrf2 activators concomitantly exert multiple effects, such as inhibition of the NF-κB 

pathway and modulation of epigenetics, which appear to contribute to protective effects in 

addition to Nrf2 activation. For example, sulforaphane, 3H-1,2-dithiole-3-thione, and 

synthetic triterpenoid CDDO-Me repress the NF-κB mediated pro-inflammatory response by 

inhibiting the binding of NF-κB to DNA and the degradation of the NF-κB inhibitory 

protein IKK [171, 243–245]. In addition, several Nrf2 activators regulate epigenetic changes 

by affecting the enzymatic activity of HDACs and DNMTs. Class I, II and IV HDACs are 

zinc metalloproteins whose activity is dependent on Zn2+ [246]. Some Nrf2 activators 

interfere with HDAC activity, possibly through chemical characteristics (i.e., 

isothiocyanates, organosulfides and phenols) that may chelate Zn2+ [247]. Various Nrf2 

activators inhibit the expression or the activity of DNMTs (i.e., sulforaphane and curcumin) 

or deplete the cellular pool of methyl donors (i.e., catechol polyphenols), resulting in altered 

DNA methylation [20, 21, 248]. The beneficial effects of Nrf2 activators may be due to a 

combination of Nrf2 activation, NF-κB inhibition and epigenetic regulation.

7. Conclusions and future prospects

Nrf2 plays a profound role in physiological and pathological processes. Nrf2 not only acts as 

a master regulator in the antioxidant response and xenobiotic disposition but also modulates 

the inflammatory response, metabolic programming, cell proliferation and survival. Nrf2 

protects against many chronic diseases other than cancer, although the mechanism is not yet 

completely understood. Nutritional dietary phytochemicals such as sulforaphane, curcumin, 

DATS, EGCG and genistein have been reported to possess health beneficial effects and 

protective against carcinogenesis, neurodegeneration, cardiovascular disease and diabetic 

neuropathy through activation of the Nrf2 pathway. Future studies on the cross-talk between 

Nrf2 and other signaling pathways are needed. In addition, the dual role of Nrf2 in 

carcinogenesis raises concerns for the use of Nrf2 inducers in chemoprevention, although 

there is no evidence demonstrating that Nrf2 activation through an intact Nrf2-Keap1 axis 

initiates tumorigenesis. The difference between transient and constitutive activation of Nrf2 

needs to be distinguished. Substantial evidence indicates that transient Nrf2 activation by 

pharmacological agents is beneficial. However, inhibition of the constitutive expression of 

Nrf2 may be a potential target to overcome drug resistance in cancer therapeutics. 

Furthermore, the structural information of Nrf2 remains to be unraveled, which will be 

helpful in designing better Nrf2 activators with high potency and reduced off-targets effects.
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Figure 1. 
Timeline of research advances in the Nrf2 pathway
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Figure 2. 
Nrf2 signaling pathway schema diagram
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